JavaScript is required to consult this page

Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. fMRIPrep is an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for task-based and resting fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. fMRIPrep robustly produces high-quality results on diverse fMRI data. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.

The workflow is based on Nipype and encompases a large set of tools from well-known neuroimaging packages, including [FSL](<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), ANTs, FreeSurfer, AFNI, and Nilearn.
This pipeline was designed to provide the best software implementation for each state of preprocessing, and will be updated as newer and better neuroimaging software becomes available.

fMRIPrep performs basic preprocessing steps (coregistration, normalization, unwarping, noise component extraction, segmentation, skullstripping etc.) providing outputs that can be easily submitted to a variety of group level analyses, including task-based or resting-state fMRI, graph theory measures, surface or volume-based statistics, etc. fMRIPrep allows you to easily do the following:

  • Take fMRI data from unprocessed (only reconstructed) to ready for analysis.
  • Implement tools from different software packages.
  • Achieve optimal data processing quality by using the best tools available.
  • Generate preprocessing-assessment reports, with which the user can easily identify problems.
  • Receive verbose output concerning the stage of preprocessing for each subject, including meaningful errors.
  • Automate and parallelize processing steps, which provides a significant speed-up from typical linear, manual processing.

Other software

All software

3DSpineS

Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex and their morphology appears to be critical from the functional point of view. Thus, characterizing this morphology is necessary to link structural and functional spine data and thus interpret and make them more meaningful. We have used a large database of more than 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons that is first transformed into a set of 54 quantitative features characterizing spine geometry mathematically. The resulting data set is grouped into spine clusters based on a probabilistic model with Gaussian finite mixtures. We uncover six groups of spines whose discriminative characteristics are identified with machine learning methods as a set of rules. The clustering model allows us to simulate accurate spines from human pyramidal neurons to suggest new hypotheses of the functional organization of these cells.

Data analysis and visualisationData

Android app for multimodal data acquisition from wearables

An app for acquiring and storing data from multiple sensors. Currently, can be used with the following devices: Empatica E4 Tablet/Smartphone built-in sensors MetaMotion R In order to improve reliability, a bipartite structure has been implemented. In particular, the Main Activity acts as an interface between the user and the main service that constitutes the principal actor. The latter performs scans, handles the user's requests to connect remote devices, all the unexpected disconnection that may happen and receives the data from the wireless sensors.

Data

Bids Manager & Pipeline

Manually driven processes for data storing can lead to human errors, which cannot be tolerated in the context of a clinical data sets. The Bids manager offers a secure system to import and structure patient’s clinical data sets in Brain Imaging Data Structure (BIDS). BIDS is an initiative aiming at establishing a common standard to describe data and its organization on disk for both neuroimaging and electrophysiological data. Bids Manager is a software for clinicians and researchers with a user-friendly interface.

Share dataData

Make the most out of EBRAINS

EBRAINS is open and free. Sign up now for complete access to our tools and services.

Ready to get started?Create your account