3DSpineMFE
A MATLAB® toolbox that given a three-dimensional spine reconstruction computes a set of characteristic morphological measures that unequivocally determine the spine shape.
This tool presents a new technique for the generation of three-dimensional models for neuronal cells from the morphological information extracted through computed-aided tracing applications. The 3D polygonal meshes that approximate the cell membrane can be generated at different resolution levels, allowing balance to be reached between the complexity and the quality of the final model.
Neuronize implements a novel approach to generate a realistic 3D shape of the soma from the incomplete information stored in the digitally traced neuron using a physical deformation technique.
The addition of a set of spines along the dendrites completes the model, generating a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.
A MATLAB® toolbox that given a three-dimensional spine reconstruction computes a set of characteristic morphological measures that unequivocally determine the spine shape.
Arbor is a high-performance library for computational neuroscience simulations with multi-compartment, morphologically-detailed cells, from single cell models to very large networks. Arbor is written from the ground up with many-cpu and gpu architectures in mind, to help neuroscientists effectively use contemporary and future HPC systems to meet their simulation needs. Arbor supports NVIDIA and AMD GPUs as well as explicit vectorization on CPUs from Intel (AVX, AVX2 and AVX512) and ARM (Neon and SVE). When coupled with low memory overheads, this makes Arbor an order of magnitude faster than the most widely-used comparable simulation software. Arbor is open source and openly developed, and we use development practices such as unit testing, continuous integration, and validation.
BioExcel Building Blocks Workflows is a collection of biomolecular workflows to explore the flexibility and dynamics of macromolecules, including signal transduction proteins or molecules related to the Central Nervous System. Molecular dynamics setup for protein and protein-ligand complexes are examples of workflows available as Jupyter Notebooks. The workflows are built using the BioBB software library, developed in the framework of the BioExcel Centre of Excellence. BioBBis a collection of Python wrappers on top of popular biomolecular simulation tools, offering a layer of interoperability between the wrapped tools, which make them compatible and prepared to be directly interconnected to build complex biomolecular workflows.
EBRAINS is open and free. Sign up now for complete access to our tools and services.