JavaScript is required to consult this page

STEPS is a package for exact stochastic simulation of reaction-diffusion systems in arbitrarily complex 3D geometries. Our core simulation algorithm is an implementation of Gillespie's SSA, extended to deal with diffusion of molecules over the elements of a 3D tetrahedral mesh.


While it was mainly developed for simulating detailed models of neuronal signaling pathways in dendrites and around synapses, it is a general tool and can be used for studying any biochemical pathway in which spatial gradients and morphology are thought to play a role.


STEPS also supports accurate and efficient computational of local membrane potentials on tetrahedral meshes, with the addition of voltage-gated channels and currents. Tight integration between the reaction-diffusion calculations and the tetrahedral mesh potentials allows detailed coupling between molecular activity and local electrical excitability.


We have implemented STEPS as a set of Python modules, which means STEPS users can use Python scripts to control all aspects of setting up the model, generating a mesh, controlling the simulation and generating and analyzing output. The core computational routines are still implemented as C/C++ extension modules for maximal speed of execution.


STEPS 3.0.0 and above provide early parallel solution for stochastic spatial reaction-diffusion and electric field simulation.

STEPS 3.6.0 and above provide a new set of APIs (API2) to speedup STEPS model development. Models developed with the old API (API1) are still supported.

Other software

All software

3DSpineMFE

A MATLAB® toolbox that given a three-dimensional spine reconstruction computes a set of characteristic morphological measures that unequivocally determine the spine shape.

Modelling and simulation

Arbor

Arbor is a high-performance library for computational neuroscience simulations with multi-compartment, morphologically-detailed cells, from single cell models to very large networks. Arbor is written from the ground up with many-cpu and gpu architectures in mind, to help neuroscientists effectively use contemporary and future HPC systems to meet their simulation needs. Arbor supports NVIDIA and AMD GPUs as well as explicit vectorization on CPUs from Intel (AVX, AVX2 and AVX512) and ARM (Neon and SVE). When coupled with low memory overheads, this makes Arbor an order of magnitude faster than the most widely-used comparable simulation software. Arbor is open source and openly developed, and we use development practices such as unit testing, continuous integration, and validation.

Modelling and simulationCellular level simulation

BioExcel Building Blocks

BioExcel Building Blocks Workflows is a collection of biomolecular workflows to explore the flexibility and dynamics of macromolecules, including signal transduction proteins or molecules related to the Central Nervous System. Molecular dynamics setup for protein and protein-ligand complexes are examples of workflows available as Jupyter Notebooks. The workflows are built using the BioBB software library, developed in the framework of the BioExcel Centre of Excellence. BioBBis a collection of Python wrappers on top of popular biomolecular simulation tools, offering a layer of interoperability between the wrapped tools, which make them compatible and prepared to be directly interconnected to build complex biomolecular workflows.

Modelling and simulationMolecular and subcellular simulation

Make the most out of EBRAINS

EBRAINS is open and free. Sign up now for complete access to our tools and services.

Ready to get started?Create your account