Neo is a Python package for working with electrophysiology data in Python, together with support for reading a wide range of
neurophysiology file formats, including Spike2, NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt, and support for writing
to a subset of these formats plus non-proprietary formats including HDF5.
The goal of Neo is to improve interoperability between Python tools for analyzing, visualizing and generating electrophysiology data
by providing a common, shared object model. In order to be as lightweight a dependency as possible, Neo is deliberately limited to
represention of data, with no functions for data analysis or visualization.
Neo is used by a number of other software tools, including SpykeViewer (data analysis and visualization), Elephant (data analysis),
the G-node suite (databasing), PyNN (simulations), tridesclous (spike sorting) and ephyviewer (data visualization).
OpenElectrophy (data analysis and visualization) uses an older version of neo.
Neo implements a hierarchical data model well adapted to intracellular and extracellular electrophysiology and EEG data with
support for multi-electrodes (for example tetrodes). Neo's data objects build on the quantities package, which in turn builds on
NumPy by adding support for physical dimensions. Thus Neo objects behave just like normal NumPy arrays, but with additional
metadata, checks for dimensional consistency and automatic unit conversion.
A project with similar aims but for neuroimaging file formats is NiBabel.