STEPS

STEPS is a package for exact stochastic simulation of reaction-diffusion systems in arbitrarily complex 3D geometries. Our core simulation algorithm is an implementation of Gillespie's SSA, extended to deal with diffusion of molecules over the elements of a 3D tetrahedral mesh.

While it was mainly developed for simulating detailed models of neuronal signaling pathways in dendrites and around synapses, it is a general tool and can be used for studying any biochemical pathway in which spatial gradients and morphology are thought to play a role.

STEPS also supports accurate and efficient computational of local membrane potentials on tetrahedral meshes, with the addition of voltage-gated channels and currents. Tight integration between the reaction-diffusion calculations and the tetrahedral mesh potentials allows detailed coupling between molecular activity and local electrical excitability.

We have implemented STEPS as a set of Python modules, which means STEPS users can use Python scripts to control all aspects of setting up the model, generating a mesh, controlling the simulation and generating and analyzing output. The core computational routines are still implemented as C/C++ extension modules for maximal speed of execution.

STEPS 3.0.0 and above provide early parallel solution for stochastic spatial reaction-diffusion and electric field simulation.

STEPS 3.6.0 and above provide a new set of APIs (API2) to speedup STEPS model development. Models developed with the old API (API1) are still supported.

Create an account

EBRAINS is open and free. Sign up now for complete access to our tools and services.