All Tools

Tools

Below you can find the entire catalogue of tools and services offered on EBRAINS.  

STEPS

STEPS is a package for exact stochastic simulation of reaction-diffusion systems in arbitrarily complex 3D geometries. Our core simulation algorithm is an implementation of Gillespie's SSA, extended to deal with diffusion of molecules over the elements of a 3D tetrahedral mesh. While it was mainly developed for simulating detailed models of neuronal signaling pathways in dendrites and around synapses, it is a general tool and can be used for studying any biochemical pathway in which spatial gradients and morphology are thought to play a role. STEPS also supports accurate and efficient computational of local membrane potentials on tetrahedral meshes, with the addition of voltage-gated channels and currents. Tight integration between the reaction-diffusion calculations and the tetrahedral mesh potentials allows detailed coupling between molecular activity and local electrical excitability. We have implemented STEPS as a set of Python modules, which means STEPS users can use Python scripts to control all aspects of setting up the model, generating a mesh, controlling the simulation and generating and analyzing output. The core computational routines are still implemented as C/C++ extension modules for maximal speed of execution. STEPS 3.0.0 and above provide early parallel solution for stochastic spatial reaction-diffusion and electric field simulation. STEPS 3.6.0 and above provide a new set of APIs (API2) to speedup STEPS model development. Models developed with the old API (API1) are still supported.

Subcellular WebApp

The subcellular application was designed as a hub web based environment for creation and simulation of reaction-diffusion models integrated with the molecular repository. It allows also to import, combine and simulate existing models expressed with BNGL and SBML languages. Two types of models are supported: rule-based models convenient and computationally efficient for modeling big protein signaling complexes and chemical reaction network models. The subcellular application is integrated with a number of solvers for reaction-diffusion systems of equations. It supports simulation of spatially distributed systems using STEPS (stochastic engine for pathway simulation) – which provides spatial stochastic and deterministic solvers for simulation of reactions and diffusion on tetrahedral meshes. The application provides as well a number of facilities for visualizing the models geometry and the results of the simulations. The molecular repository is a publicly available database of biological information, relevant for brain molecular network modeling. It accommodates several types of biological information which are not available from existing public databases, such as concentrations of proteins in different subcellular compartments of neuronal and glial cells, kinetic data on protein interactions specific for brain and synaptic signaling and plasticity, data on molecules mobility. The repository is integrated with the subcellular application. They share the same set of entities described by BioNetGen expressions. The molecular repository can be queried from the subcellular application and the results of the query can be added to a molecular network model.

Create an account

EBRAINS is open and free. Sign up now for complete access to our tools and services.